鞍山师范学院化学与生命科学学院;辽宁省天然产物活性分子开发及利用重点实验室;
以部分剥离石墨箔EG为基底,制备了不同负载量的Na0.5MnO_2/EG电极材料,并研究了活性材料负载量对Na0.5MnO_2/EG电化学性能的影响.研究结果表明:当Na0.5MnO_2活性物质负载量为7 mg·cm-2时,所制备出的Na0.5MnO_2/EG-7电极展现出优异的电容性能;在电流密度为5 mA·cm-2时,Na0.5MnO_2/EG-7电极的面积比电容可达1.64 F·cm-2,对应的质量比电容为234 F·g-1,即使电流密度增加至100 mA·cm-2,该电极的面积比电容仍可达到0.98 F·cm-2;经5 000次充放电循环后,Na0.5MnO_2/EG-7电极的电容维持率高达90%,表现出卓越的循环稳定性.
74 | 0 | 11 |
下载次数 | 被引频次 | 阅读次数 |
[1] PATIL P H,JADHAV S A.Manganese dioxide (MnO2) and biomass-derived carbon-based electroactive composite materials for supercapacitor application[J].RSC Applied Interfaces,2024,1(4):624-647.
[2] CAO Z Q,FU J M,WU M Z,et al.Synchronously manipulating Zn2+ transfer and hydrogen/oxygen evolution kinetics in mxene host electrodes toward symmetric Zn-ions micro-supercapacitor with enhanced areal energy density[J].Energy Storage Materials,2021,40:10-21.
[3] CHEN L,WANG F,TIAN Z W,et al.Wood-derived high-mass-loading MnO2 composite carbon electrode enabling high energy density and high-rate supercapacitor[J].Small,2022,18(25):2201307.
[4] ZHANG X S,ZHANG F,WEI D Y,et al.Design and synthesis of K-doped tremella-like δ-MnO2 for high-performance supercapacitor[J].Journal of Energy Storage,2023,72:108468.
[5] WANG P,XIE X,XING Z,et al.Mechanistic insights of Mg2+-electrolyte additive for high energy and long-life zinc-ion hybrid capacitors[J].Advanced Energy Materials,2021,11:2101158.
[6] WANG K L,WANG J J,QIAN J,et al.Boosted Na+-MnO2 supercapacitor performance via strong metal support interaction[J].Journal of Colloid and Interface Science,2024,682:865-874.
[7] LI X J,WANG X K,LIU G,et al.2.5 V “water in salt” aqueous micro-supercapacitors based on polypyrrole-coated NiCo layered double hydroxides[J].Chemical Engineering Journal,2023,452:139140.
[8] SU F,QIN J Q,DAS P,et al.A high-performance rocking-chair lithium-ion battery-supercapacitor hybrid device boosted by doubly matched capacity and kinetics of the faradaic electrodes[J].Energy Environmental Science,2021,14(4):2269-2277.
[9] LIU J L,WANG J,XU C H,et al.Advanced energy storage devices:basic principles,analytical methods,and rational materials design[J].Advanced Science,2018,5(1):1700322.
[10] XU C,LI Z H,YANG C,et al.An ultralong highly oriented nickel-nanowire-array electrode scaffold for high-performance compressible pseudocapacitors[J].Advanced Materials,2016,28(21):4105-4110.
[11] HE Y M,CHEN W J,LI X D,et al.Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes[J].ACS Nano,2013,7(1):174-182.
[12] ZHOU G M,WANG D W,YIN L C,et al.Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage[J].ACS Nano,2012,6(4):3214-3223.
[13] SONG Y,FENG D Y,LIU T Y,et al.Controlled partial-exfoliation of graphite foil and integration with MnO2 nanosheets for electrochemical capacitors[J].Nanoscale,2015,7(8):3581-3587.
[14] DEVI R,KUMAR V,KUMAR S,et al.Electrochemical analysis of MnO2 (α,β,and γ)-based electrode for high-performance supercapacitor application[J].Applied Sciences,2023,13:7907.
[15] MLADENOVA B,DIMITROVA M,STOYANOVA A.MnO2/AgNPs composite as flexible electrode material for solid-state hybrid supercapacitor[J].Batteries,2024,10(4):122.
[16] ISLAM M S,HOQUE S M,RAHAMAN M,et al.Superior cyclic stability and capacitive performance of cation and water molecule pre-intercalated δ-MnO2/h-WO3 nanostructures as supercapacitor electrodes[J].ACS Omega,2024,9:10680-10693.
[17] QIAN Y D,ZHOU Z,ZHANG Q C,et al.Boosting the energy density of bowl-like MnO2@carbon through lithium-intercalation in a high-voltage asymmetric supercapacitor with “water-in-salt” electrolyte[J].Small,2024,20(35):2310037.
[18] CHODANKAR N R,PATIL S J,RAMARAJU G S,et al.Two-dimensional materials for high-energy solid-state asymmetric pseudocapacitors with high mass loadings[J].Chemsuschem,2020,13(6):1582-1592.
[19] CUI L L,CHENG C,PENG F,et al.A ternary MnO2-deposited RGO/lignin-based porous carbon composite electrode for flexible supercapacitor applications[J].New Journal of Chemistry,2019,43(35):14084-14092.
[20] ZHANG D Z,DAI J M,ZHANG J J,et al.Preparation of spherical δ-MnO2 nanoflowers by one-step coprecipitation method as electrode material for supercapacitor[J].ACS Omega,2024,9(16):18032-18045.
基本信息:
DOI:10.20212/j.issn.1008-2441.2025.02.005
中图分类号:O646;TM53
引用信息:
[1]孙震,陈梦凡,王海旭等.高负载量氧化锰电化学沉积及其储能性能研究[J].鞍山师范学院学报,2025,27(02):25-31.DOI:10.20212/j.issn.1008-2441.2025.02.005.
基金信息:
辽宁省教育厅项目(JYTMS20231703); 鞍山师范学院科研项目(22b11,22b12,23kyxm027,23kyxm031)